

BRIDGING KNOWLEDGE GAPS IN BAMBOO CONSTRUCTION

CLIMATE SMART HOUSING

LUIS FELIPE LOPEZ

NEED FOR SOCIALIZED HOUSING

1.6 billion

Expected to be affected by the global housing shortage in 2025 (World Bank)

96,000 The need to build new

affordable homes everyday to house the estimated 3 billion people who will need access to adequate housing by 2030 (UN-Habtat)

80%

cities worldwide do not have affordable housing options for the majority of their population (World Green Building Council)

PHILIPPINE HOUSING

22 million

Estimated housing backlog by 2040 (UN-Habitat PH Country Report 2023)

ŤŤŤŤŤ ŠŤŤŤŤ

3.7 million

Estimated number of Informal settlers in the Philippines (UN-Habitat PH Country Report 2023)

22

average number of tropical cyclones that enter the Philippine Area of Responsibility each year

P388 billion

estimated cost of damages due to disaster

(UN-Habitat PH Country Report 2023)

About Base

Provides alternative building technologies to enable a network of partners that provide comfortable, affordable, resilient, ecofriendly houses with social impact.

GLOBAL CO2 EMISSIONS

Sustainable material that provides livelihood TRANSPORTATION to farmers BUILDING **≣1**28% Strong root network **OPERATIONS** 23% **O** enables soil stabilization and water table rise **OTHERS** CONCRETE, Only 3-5 years growth STEEL, & ALUMINUM for structural grade 22.7% bamboo Concrete 11.1% Steel 10.1% 6% GLOBAL CO2 EMISSIONS Aluminum 1.5% 60% less carbon footprint for each Base house INDUSTRY compared to conventional Building finishes, glass, equipment and plastics, 20.3% rubber, paper, others More comfortable indoor climate in the houses resulting to less energy Source: 2018 Global ABC Report IEA use during occupation **Base**

WHY BAMBOO?

Accreditation of Innovative Technologies for Housing (AITECH)

Bahareque Technology, Colombian Engineering Filipino Craftsmanship

BASE aims to help provide poor families and disaster victims with sustainable, affordable, disaster-resilient, environment-friendly, and comfortable socialized homes built with the CBFT.

EXCAVATION

FOUNDATION

CONCRETE SLAB

PANEL FABRICATION

ROOF STRUCTURE

Base

INR

Sustainable Material Built according with

the National Structural Code of the Philippines

Teaches new skill

Same economic lifespan as a conventional permanent house

Families lead more dignified lives

CBFT STRUCTURES HOUSING PROJECTS

SINGLE STOREY

Duplex Housing, Samar

Single Detached Housing, Tacloban

CBFT STRUCTURES HOUSING PROJECTS

TWO-STOREY

Single Detached, Davao

Torogan House, Bukidnon

Duplex Housing, Ilollo

CBFT STRUCTURES HOUSING PROJECTS

TWO-STOREY MIDDLE CLASS

Single Detached with Loft of Kawayan Collective Model House, Dauin

CBFT STRUCTURES SPECIAL STRUCTURES

ECONOMIC EMPOWERMENT

Weaving Center, Batangas

CBFT STRUCTURES SPECIAL STRUCTURES

NON-RESIDENTIAL

Kanya Kawayan, Batangas

CBFT STRUCTURES SPECIAL STRUCTURES

NON-RESIDENTIAL

School Building, Tacloban

Projects

BASE has built over 2,000 homes in 25+ communities in the Philippines and over 400 homes in 4 communities in Nepal, and has 6 bamboo supply facilities

Jaro

Tacloban

E. Samar

Sicogon

Quezon City

Sorsogon

Davao

Workers

Basey

Lanit

Cabug

Silay

San Carlos

6

25+ Communities

RESEARCH & INNOVATION

At BASE, innovation is at the forefront, with continuous research and development through the Base Innovation Center to optimize technology and explore new applications beyond standard housing models.

BASE INNOVATION CENTER

RESEARCH & DEVELOPMENT

Committed to continuous improvement and optimization of construction processes and procedures.

Conducting a series of training on CBFT and other housing solutions with an emphasis on quality and resiliency.

TECHNOLOGY TRANSFER

Providing and sharing the expertise on CBFT with partners.

BASE INNOVATION CENTER

Serves as a venue for numerous research and testing programs as well as training courses that engage other institutions and professionals with the objective of further propelling bamboo-based technology and other alternative building technologies.

MATERIAL AND COMPONENTS TEST

Material

Connection

CHARACTERIZATION OF MECHANICAL PROPERTIES

Mechanical properties of Bambusa Blumeana conducted with ISO 22157:2021

	fc	ft	fm	fv	ft,90	Em,0.05	Em,0.75	ρ
Characteristic Value	41.4	62.1	55.2	5.8	0.5	13.2	19,763.5	760.5
Allowable Value	20.7	31.1	27.6	1.5	0.1			
Samples Tested	322	60	159	217	101	147	147	900

BENDING STRENGTH OF BAMBOO SPECIES IN THE PHILIPPINES

Total number of Samples Tested:

- 159 Bambusa Blumeana
- 32 Bambusa Vulgaris
- 30 Dendrocalamus Asper
- 30 Bambusa Philippinensis

Average Bending Stress
Characteristic Value
Allowable Stress

COMPARISON OF 5 BAMBOO SPECIES IN SHEAR PARALLEL

Total number of Samples Tested: 603 Bamboo Culms

COMPARISON OF 3 BAMBOO SPECIES IN TENSION PARALLEL

Tensile Strength 120.00 100.64 100.00 91.51 80.55 Fensile Strength (MPa) 80.00 Average Bending Stress 60.00 Characteristic Value 48.71 46.81 Allowable Stress 40.00 33.29 24.36 23.41 16.65 20.00 0.00 Bambusa Blumeana **Bambusa Vulgaris** Dendrocalamus Asper Base

Total Samples tested: 262

- 101 Bambusa Blumeana
- 101 Dendrocalamus Asper
- 60 Bambusa Vulgaris

BAMBOO CONNECTIONS RESEARCH

Research on Bamboo Connections:

- Characterization of Various Steel bolted Connections
- Steel plate for foundation connections
- Embedded Rebar Strength Connections
- Dowel Bearing Strength Resistance of Bamboo
- T-connections

Base

TIP

Embedded Rebar

Dowel Bearing Strength

Steel Plate Connections

BAMBOO SHEAR WALL TEST

Cement Bamboo Shear wall 2.4m by 2.4m tests

BAMBOO SHEAR WALL TEST RESULTS

Failure modes

Base

Diagram of Cement Bamboo Frame Panel with markings on Crack Propagation:

Yield Point (2S_1)

Force vs. Displacement for Dynamic Shear Panel Test

RESEARCH PARTNERSHIP ALTERNATIVE BUILDING TECHNOLOGIES

Mass Bamboo research

Slat-dowel bearing panel (Pinboo) Research

ase

RESEARCH PLANS

- Completion of Characteristic Value for Bambusa Vulgaris - MAPUA
- Static and Dynamic Tests on Bamboo Shear walls with Riblath and Flattened Bamboo mesh - ETH Zurich
- Tests on most common bamboo connections
 - P Connection
 - T Connection
 - Q Connection

UPRC III Bldg., 2289 Chino Roces Avenue Extension, Makati City 1231, Philippines

www.base-builds.com